尔游网
您的当前位置:首页球内接几何体

球内接几何体

来源:尔游网


1.长方体ABCD-ABCD的顶点均在一个球面上,AB=AA=1,

11111球面距离为,则正三棱柱的体积为 。 性质

111BC=2,则A,B两点间的球面距离为 。 长方体 9. 直三棱柱ABC-ABC的各顶点都在同一球面上,若

3,则该

12.一个正方体各顶点都在球面上,若该球体积4AB=AC=A A=2,∠BAC=120°,则球的表面积等于 。

性质

正方体表面积为 。 正方体 3.一个正四棱柱的各个顶点在一个直径为2的球面上,如果

正四棱柱的底面边长为1,则该棱柱的表面积为 。 正四棱柱

4.直三棱柱ABC-A1B1C1的各顶点都在同一球面上,若AB=AC=A A1=2,∠BAC=90°,则球的表面积等于 。 补形 5.若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 。 补形 6.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=

2,则球O的表面积为( ) 补形 A.4 B.3 C.2 D.

7.半径为1的球面上的四点A,B,C,D是正四面体的顶点,则A,B两点间的球面距离为( ) 补形 A.arccos(3) B.arccos(633)

C.arccos(113) D.arccos(4)

8.正三棱柱ABC-A1B1C1内接于半径为2的球,若A、B两点的

10.正四棱锥S—ABCD的底面边长和各侧棱长都为2,点

S、A、B、C、D都在同一个球面上,则该球的体积为 。

性质

?11.半径为2的半球内有一内接正六棱锥P-ABCDEF,则此正六棱锥的侧面积是( )

?12.2005辽宁试卷17. (本小题满分12分)

已知三棱锥P—ABC中,E、F分别是AC、AB的中点,

△ABC,△PEF都是正三角形,PF⊥AB。

(Ⅰ)证明PC⊥平面PAB;

(Ⅱ)求二面角P—AB—C的平面角的余弦值;

(Ⅲ)若点P、A、B、C在一个表面积为12π的球面上,求△ABC的边长。

高为

2的四棱锥

S-ABCD的底面是边长为1的正方形,点S、

A、B、C、D均在半径为1的同一球面上.ABCD中心为O. (1) 求SO的长;

(2) 当SB=SD时,求二面角S-BD-A的大小. 已知半径为

3的球

O中,有一球小圆O`直径AB为2,C是小

圆AB的中点,D

为AC的中点.

(1) 证明:面OO`D⊥面PAC; (2) 求二面角B-OA-C的余弦值.

因篇幅问题不能全部显示,请点此查看更多更全内容